Концептуальное определение и представление системы геодезических знаний

Г.С. Тетерин* | М.Л. Синянская Сибирский государственный университет геосистем и технологий, Новосибирск, Россия teterin-books@yandex.ru

Аннотация

В статье рассматриваются два подхода в системном обосновании и представлении геодезии как науки. Основу этих подходов составляют сформулированные определение и понимание геодезии (ОПГ-1 и ОПГ-2). Показано, что вариант ОПГ-1, используемый в геодезической образовательной и научной литературе, является «тупиковым», в системе геодезического образования он наносит определенный вред. Вариант ОПГ-2, в рамках которого представлена данная статья, имеет теоретическую и методологическую основу, исключает какие-либо противоречия. Его доказательной базой является вся история геодезии.

Ключевые слова

Методологическая триада, геодезическая метрика, принципы и критерии развития

Введение

Геодезия, как наука, в системе современного геодезического образования, имеет парадоксальную ситуацию: имеется множество геодезий, различаемых по сфере приложения и специфическим методам, но отсутствует единая системная геодезия. Современная официальная геодезия не имеет единой теоретической базы, методологической основы, в ней не установлено предметное существо, отсутствует обобщенный метод, как совокупность методов, применяемых при решении хозяйственных, научных и технических задач.

Авторами разработана методологическая основа, определение и объяснение понятия геодезии. Она опубликована в десятках статей и отдельных монографиях. Ниже представлена геодезия, как системная целостность, отвечающая всем историческим этапам развития, исключающая какие-либо противоречия.

Обсуждение

Важное, если не главное, место в исследованиях любой науки занимает методологическая триада - предмет, метод, объект. Каждая наука отличается от других своим методом. Объекты приложения могут совпадать, но науки отличаются своей предметной

^{*} Corresponding author

сущностью, т. е. в том, что составляет их существо, цель, назначение. И только определив предмет науки и ее метод, становится возможным четкое понимание науки.

Рассматриваемый методологический подход вносит полную ясность в понимание науки и определяет ее задачи, ценностные характеристики и многое другое. Наконец, немалое значение имеет понимание прошлого, настоящего и особенностей эволюции науки, перспектив ее развития.

Все перечисленное, несомненно, имеет значение и в науке геодезии, история которой насчитывает более трех тысячелетий, по крайней мере, со времен Аристотеля.

К сожалению, приходится отметить, что исследования основ геодезии в методологическом плане почти не проводятся, этим занимается незначительное число ученых. Это подтверждается использованием в геодезической литературе ошибочного определения науки геодезии, несовместимого с ее прошлым и настоящим. В соответствии с этим определением следует, что геодезия появилась только в XVIII-XIX вв.

В последние несколько десятилетий в геодезии четко определились системные проблемы, в том числе методологические, в частности противоречия в интерпретации системы геодезических знаний. Важным становится соотношение между частным и общим. Уровень системных исследований в области теоретических и методологических проблем остается низким. По существу, эти вопросы, касающиеся основ геодезии, остаются вне исследовательской активности научных и образовательных сфер, как видно из публикаций в научных журналах и систем докладов на крупных конференциях. Но главным подтверждением сказанного является сохранение и определения и понимания геодезии (ОПГ) в рамках второй половины 20-го века.

Существующее и широко используемое в России, в образовательной и научной литературе ОПГ составляет основу принятого направления развития геодезии. Истоком этого ОПГ с служит сформулированные еще Ф. Н. Красовским в 30-40-е годы научные задачи геодезии. В последующем, соответствующие этим задачам ОПГ вошли в различные справочники, энциклопедии (Тетерин, 2009; 2010). Вместе с тем, в 70-80 гг. Тетериным Г. Н. была разработана, в рамках геометрической концепции развития геодезии, так называемая теория развития геодезии (ТРГ) (Тетерин, 2009а; 2009b). В основу ТРГ была положена методологическая триада геодезической науки. При этом под объектом приложения геодезии понимается окружающая среда, именуемая наукой географической средой, окружающим миром, а в последнее время - геопространством (Тетерин, 2017). Таким образом,

методологическая триада на общесистемном уровне определяет науку геодезию и вполне характеризует ее особенности и тенденции развития.

Для человека окружающая среда, пространство и время определяют условия жизнеобеспечения в окружающем мире. Именно поэтому представление *о пространственных отношениях и формах* объектов и явлений окружающего пространства, их оценка сформировали важнейшую задачу в жизни человека. В результате, метод оценки этих отношений и его реализация стали *основой формирования геодезического метода*. Его реализация была изначально возможна в форме измерений.

Окружающее пространство мы именуем как геопространство. Все элементы этого пространства, как и само пространство, имеют форму, размер и пространственное положение (ФРПП) (Тетерин, 2017). Все эти три составляющие мы именуем как геодезическую метрику, проще – как метрику. Таким образом, все объекты и явления геопространства могут быть выражены с помощью структурных элементов (точки, линии, поверхности), т.е. структурированы. В результате появляется возможность оценки этих элементов с помощью геодезической метрики. Последняя определяет геометрическую структуру геопространства. Поэтому знание пространственных отношений и форм объектов и явлений окружающего мира сводятся в конечном итоге к знанию их геодезической метрики. Такие знания составляют предметную основу геодезии.

Единственным средством искомых метрических отношений стали измерения. Их эволюция и развитие сформировали геодезический метод. Таким образом, история геодезических знаний появилась, когда человек путем измерений стал определять ФРПП, т. е. метрику структурных элементов объектов и явлений окружающего мира (геопространства).

В чем заключается сущность геодезических измерений для получения ФРПП объектов геопространства? В этих измерениях субъектом измерений являлся сам человек, его возможности. С другой стороны, в процессе измерений необходимо было учитывать физические законы геопространства, важнейшими из которых были гравитация и силы тяготения. Эти два условия нами были ранее определены как принципы влияния: принцип «Вертикаль-горизонталь» (ПВГ) и «принцип 6-ти направлений» (П6Н) (Тетерин, 2009а).

Первый принцип (ПВГ) учитывает два условия геопространства – вертикальность и горизонтальность, важнейшие условия форм объектов и явлений окружающего мира, без знания которых геодезическая метрика была бы не определена. Этот принцип предопределил

появление отвесов, уровней и различных приспособлений для определения вертикальности и горизонтальности.

Второй принцип (П6H) составил важнейшее условие, учитывающее физиологические возможности человека в решении задач по определению, измерению геодезической метрики. Эти два условия слились в один принцип – прямоугольности (ПП). Его реализация в геопространстве была возможной и единственно связанной с фигурой человека.

Пример. В фигуру человека заложена прямоугольная система координат (рисунок 1), выражаемая словами: право, лево, вперед, назад, верх, низ. Таким образом, принцип прямоугольности, по существу, был координатным принципом (ПП-ПК). Этот принцип оказал решающее влияние на метод геодезии и технологию. Вся технология и метод решения задач древнего мира сводились к прямоугольно-прямолинейной форме геодезических построений (Тетерин, 2016) - это пять вариантов геодезических построений, сетей в древнее время.

Исследования, проведенные авторами, установили, что физиологические особенности человека, его фигуры позволяли в глубокой древности строить прямые углы, реализовывать условия вертикальности и горизонтальности с точностью 3-5" (Синянская, 2016).

Рассмотренные принципы (ПВГ и ПП-ПК) можно определить, как технологические, поскольку они формировали технологию геодезических работ на всех этапах развития геодезии. В различных статьях, в том числе в работе (Тетерин, 2014), эти принципы и их реализация, теоретические (методологические) особенности выражены в форме систем аксиом.

Важнейшей характеристикой ТРГ, как отмечено выше, является геодезическая метрика, характеризующая объекты и явления окружающего пространства с помощью структурных элементов (СЭ). Они определяют полноту метрических характеристик геопространства. Таким образом, познание геопространства и его описание, формирование и понимание может быть осуществлено посредством геодезической метрики. Именно она является средством познания окружающего мира. Она же является предметной сущностью геодезической науки.

Существует три важнейших задачи, связанных с геодезической метрикой геопространства, а именно: измерение, моделирование и контроль геодезической метрики во времени. Следует особенно отметить, что под моделированием геопространства понимается четыре вида: графическое, аналитическое, цифровое и физическое. Все перечисленные виды моделирования составляют и характеризуют в совокупности уровень геометризации и

организации пространства.

Определение геодезической метрики, т. е. измерение, моделирование и контроль требуют разработки И создания определенных технологических инструментов, совершенствование которых должно вписываться в определенные исторические рамки, границы и соответствовать особенностям геопространства, условиям и требованиям с учетом технологических принципов (принципов влияния) (Тетерин, 2009а). В конечном итоге, отмеченные принципы (см. рис. 1), характеризуют и исторически формируют эволюцию, с одной стороны инструментов и приборов, с другой – технологию. Именно они объясняют эволющию геодезического инструментостроения и технологию решения трех основных задач геодезии (измерение, моделирование и контроль) всех исторических этапов развития геодезии, включая настоящее время и предположительно для всего 4-го этапа развития геодезии (4-й парадигмы).

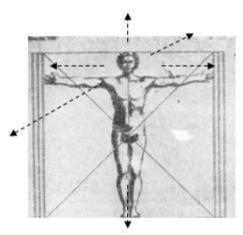


Рис. 1. Принцип прямоугольности

Все историческое развитие и эволюция геодезии характеризуется несколькими критериями, которые вытекают и следуют из логистического закона развития геодезии (ЛЗРГ), именуемого также как закон пространственно-временной предопределенности (ЗПВП).

В этом законе одной из его характеристик является так называемый коэффициент (параметр) сжатия исторического времени ($\alpha = 5,1$ и $\beta = 3,0$). Эти два параметра определяют и устанавливают закон предопределенности всей истории геодезии (Тетерин, Синянская, 2015а) или 4-х исторических эпох (парадигмы). Эти коэффициенты позволяют оценить исторические границы между историческими эпохами и сделать прогнозирование границ последующих эпох. Вместе с тем, с учетом предметных основ геодезии (метрика)

устанавливается в целом начало (историческое) геодезических работ, т. е. начало цивилизации и тем самым определяется начало 1-й исторической эпохи (землемерной) и границы всех последующих эпох. В целом все перечисленное устанавливает так называемый критерий предопределенности, критерий периодизации.

Второй критерий (технологический) вытекает из основной формулы ЛЗРГ:

$$y = 10^{-2i}$$
 (1)

Из этой формулы следует, что переход от одной исторической эпохи к другой (i, i+1) характеризуется коэффициентом и критерием перехода $K = 10^2$ (Тетерин, Синянская, 2015b), т. е. эффективность технологии геодезических работ увеличивается на 2 порядка. Эта эффективность технологий соотносится с точностью измерений. С учетом предполагаемой ее оценки в виде $y = 10^{-2i}$, получим оценку точности измерений в каждой исторической эпохе:

$$\Delta y = \{10^{-2(i-1)} - 10^{-2i}\},\tag{2}$$

Применительно к каждой исторической эпохе этот коридор точности имеет вид:

от
$$10^{0}$$
 до 10^{-2} при $i=1$ от 10^{-2} до 10^{-4} при $i=2$ от 10^{-4} до 10^{-6} при $i=3$ от 10^{-6} до 10^{-8} при $i=4$

Следовательно, формула (2) определяет кривую точности измерений. Соответственно все технологии геодезических работ характеризуются этим критерием. Наконец, геодезия при своем совершенствовании геометризирует все геопространство, формируя его аналитические, цифровые, графические и физические модели, тем самым повышая уровень геометризации, организации пространства. При этом, этот уровень, при переходе к следующей эпохе повышается на 2 порядка.

Следовательно, в конечном итоге мы получим в соответствии с ТРГ и ЛЗРГ *три главных* критерия развития геодезии – предопределенности, точности измерений и организации геопространства.

Представленная ТРГ в рамках методологической триады полностью отвечает всем временным историческим этапам развития геодезии, в том числе современному. Более того, этот закон и вытекающий из него закон пространственно-временной предопределенности решает ряд важнейших вопросов, связанных с развитием цивилизации. Такие данные ТРГ позволяют исключить всяческие противоречия в геодезии методологического и философского характера. Для современного этапа развития нет другого альтернативного объяснения

сущности геодезии и ее универсальной значимости в решении совокупности задач на всех этапах развития.

Выводы

- 1. Существующее в образовательной и справочной литературе определение и понимание геодезии не меняется (ОПГ-1). В нем отсутствует методологический подход, не сформулирован предмет науки, отсутствует также доказательная база.
- 2. Определение и понимание геодезии в рамках теории развития геодезии в соответствии с выше изложенным характеризуется как ОПГ-2. Это ОПГ-2 имеет системную теоретическую и методологическую основу, а ее доказательной базой служит вся история геодезии.
- 3. В плане дальнейшего развития геодезии первый вариант ОПГ (ОПГ-1) является «тупиковым», не обеспечивая какой-либо перспективы развития. Второй вариант (ОПГ-2) обеспечивает системное развитие геодезии.

Список литературы

Тетерин Г.Н., 2009а. Феномен и проблемы геодезии. URL: http://istgeodez.com/fenomeni-problemyi-geodezii/ Accessed: 27/12/2017

Тетерин Г.Н., 2009b. Геодезия — это метод, или «наука о фигуре Земли», или нечто большее? Изыскательский вестник. — №2. — С. 5-11.

Тетерин Г.Н., 2010. Проблемы системной целостности и предметности в современной геодезии Изыскательский вестник. – №1. – С. 41-49.

Тетерин Г.Н., 2014. Теоретические и методологические основы современной геодезии.

URL: http://istgeodez.com/teoreticheskie-i-metodologicheskie-os/ Accessed: 27/12/2017

Тетерин Г.Н., 2016. История геодезии (до XX в.) // Новосибирск: ООО «Альянс-Регион». - 302 с.

Тетерин Г. Н., 2017. Геопространство, геодезическая метрика, геодезия URL: http://istgeodez.com/geoprostranstvo-geodezicheskaya-metrika-geodeziya/ Accessed: 27/12/2017

Тетерин Г.Н., Синянская М.Л., 2015а. Закон пространственно-временной предопределенности и датировка исторических событий и эпох // Известия вузов. Геодезия и аэрофотосъемка. – N 1. – С. 38-42.

Тетерин Г.Н., Синянская М.Л., 2015b. Константы и параметры развития геодезии // Геодезия и картография. – №6. – С. 58-62.

Синянская М. Л., 2016. Разработка критериев и принципов технологического развития геодезии. Автореферат. URL: http://istgeodez.com/avtoreferat-sinyanskaya-m-l/ Accessed: 27/12/2017

Abstract

Two approaches are considered in the systemic justification and representation of geodesy as a science. These approaches are based on the formulated definition and understanding of geodesy (OPG-1 and OPG-2). It is shown that the option OPG-1, used in the geodetic educational and scientific literature, is "deadlocked", in the system of geodetic education it causes certain harm. Option OPG-2, within the framework of which this article is presented, has a theoretical and methodological basis, excludes any contradictions. Its evidence base is the whole history of geodesy.

Keywords

Methodological triad, geodesic metrics, principles and development criteria

Abstrakt

Zwei Ansätze werden bei der systematischen Begründung und Darstellung der Geodäsie als Wissenschaft berücksichtigt. Diese Ansätze basieren auf der formulierten Definition und dem Verständnis der Geodäsie (OPG-1 und OPG-2). Es wird gezeigt, dass die in der geodätischen Lehr- und Wissenschaftsliteratur verwendete Option OPG-1 "festgefahren" ist, im System der geodätischen Erziehung dagegen schadet sie. Option OPG-2, in deren Rahmen dieser Artikel vorgestellt wird, hat eine theoretische und methodische Grundlage, schließt Widersprüche aus. Seine Evidenzbasis ist die gesamte Geschichte der Geodäsie.

Schlüsselwörter

Methodische Triade, geodätische Metriken, Prinzipien und Entwicklungskriterien